
03B_Thermodynamic Approach to Fracture 
Fracture is the propagation of a pre-existing flaw (also called a micro-crack) under and applied stress. Therefore, the critical 
condition for crack propagation must coalesce the applied stress with the flaw size. This is the field of Fracture Mechanics. It 
developed rapidly in analytical form in the sixties. Later on, and even today, it has become more computational.  

Our approach is to take a fundamental approach so as to grasp the basic principles that form the foundation of Fracture 
Mechanics. This approach combines thermodynamics and mechanics.  

The thermodynamic approach, first developed by Griffith, is described here. 

It is based upon the work required to propagate the crack and the work that can be done my mechanical forces and 
displacement on the system to overcome the work of fracture. These two contributions to the overall thermodynamic 
analysis are summarized in the following Table.  

Local Work on the System Work Done by the Surroundings  
Work of Fracture when the crack grows

  Units Jm–2 

when multiplied by crack advance: 

2D problem =   

Penny Shaped Crack = 
  

The work has units of Joules 

Reduction in Stored Elastic Energy Reduction in Potential Energy 
(gravitational energy in a load) 

 

Units J 

 

Load x Displacement 

  Units of J 

 

The method of analysis is to consider a crack placed under certain stresses and forces to advance by an incremental amount. 
The work done to advance the crack in this way is compared to the work done by the mechanical system when the crack 
moves by a small distance.  

Remember that applied stresses and forces can produce a driving force to advance the crack only is there is a give-and-take 
relationship between the movement of the crack and physical displacements in the mechanical system. Keep in mind that 
work is a product of force and displacement, therefore, crack advance must be accompanied by discernible displacements in 
the system.  
 

The left-hand column in the Table, above, describes the work of fracture for an incremental growth of a crack from 
. Two cases are considered, a ribbon-shaped edge-crack with a unit depth normal to the paper (the 2D case) and 

a penny shaped crack in the middle of the sample (the 3D case).  

 is the work done when the crack advances. Since the work of fracture is expected to be proportional to the advance of 
the crack, that is, to the creation of new surfaces, the work of fracture can be expressed as a pseudo-surface energy. Hence it 
is written as  in units of J m–2. The factor of 2 arises from the generation of two surfaces during fracture.  

The two sub-columns on the right describe sources of mechanical work done by the system to advance the crack. One of 
them is the change in the elastic energy in the system, and the second is the change in the potential energy (imagine a load 
applied to the specimen - as the crack advances the sample can become more compliant so that the load would drop - this 
work will be available to provide the work of fracture). 

As an example let us apply this method to fracture in a double cantilever beam specimen, as shown in the following section. 
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Fracture Analysis for a DCB (Double Cantilever 
Beam Specimen) 

 

  

 
Note: The specimen has unit thickness normal to the plane of the paper. Therefore, the load 

 has units of Nm–1 (not just Newtons) 

The Method 
The method consists of comparing the mechanical and fracture energy in State II with State I. If the difference is negative 
then the crack will propagate. Setting the different to zero therefore, gives the condition for fracture. These two parts of the 
energy equation are described below.  

The Work of Fracture 
State II - State I:       (1) 
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Mechanical Work 
(i) Change in Potential Energy (II -I) =  

(ii) Change in the stored elastic energy (II -I)= (Area Triangle afd) - (Area Triangle abe) 

= +(Area Triangle abf) 

From geometry we note that 
(i) + (ii) = +(Area Triangle abf) = -(Rectangle ebfd) +(Area Triangle abf)  (2) 

Since the rectangle area is exactly twice the area of triangle, the total mechanical work may be written as either 

, or as          (3) 

That is (and this is important) 

The total change in mechanical work (State II - State I) may be written to be equal to (both with a negative sign) 

•one half of the change in the potential energy 

or, as 

•the increase in the stored elastic energy  

we will use the above result later in analysis of a penny shaped crack.  

 

The Fracture Criterion 
The fracture criterion is obtained by adding the work of fracture in Eq. (1) with the change in elastic energy, Eq. (2) and 
equating the sum to zero 

 

        (4) 

Note that the increase in the stored elastic energy has been folded into the change in the potential energy as discussed just 
above. 

Noting that ;  

so that        (5) 

Combining (4) and (5), we obtain 

        (6) 

Notes: 

where, 

 is the load (per unit depth of the crack perpendicular to the plane of the paper) for the onset of fracture 

and  is the change in compliance with crack length.  

Both of the above parameters are experimentally accessible. Therefore Eq. (6) can be used to measure the work of fracture, 
which is a material parameter.  
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To measure  we make DCB (double cantilever beam) specimens with 

different crack lengths, and measure the compliance with the application of small 
loads (less that those that may cause fracture) which will give plots such as 

 

The quantity  is then obtained by a plot of compliance versus the crack 

length. 

 

In this way, all parameters in Eq. (6) are experimentally determined, leading to 
the measurement of the work of fracture . 

 

 

Equation for Beam Deflection  
The equation for the deflection of a beam under a point load at its end is given by 

 

 

The equations for beam deflection give above can be used to calculate   without having to the measure this quantity 

experimentally.  

 

Q: If  is a material parameter then can it be found in a handbook of material 
properties? 
The answer is yes, but in the form of the fracture toughness, , which is related to the work of fracture by  

 ,         (7) 

where  is the Young's modulus. In Eq. (7) all quantities are material parameters. Handbooks give the values for fracture 
toughness rather than the work of fracture because the toughness is used in engineering design.  

Fracture toughness, as we shall see in the next section has units of MPa m1/2. 

The right-hand side of Eq. (7) has units of (MPa)2m/MPa, or (MPa)m 

Pa has units of energy per unit volume. Nm–2 is the same as (N*m)*m–3, that is J m–3 (energy per unit volume). 

Therefore MPa*m  has units of energy per unit area which are the units of . 

We shall derive Eq. (7) in the following section, but let us first discuss the values for the parameters in Eq. (7) for different 
classes of materials. 
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The following figure shows a "map" of the fracture toughness vs. the Youngs Modulus, E for different classes of materials 
that includes polymers, ceramics, metals and graphite-fiber-polymer composites.  
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Notes: 

•The dotted lines are for constant values of  (   
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